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Abstract

The investigation of lie detection methods based on P300 potentials has drawn much interest in recent years. We presented
a novel algorithm to enhance signal-to-noise ratio (SNR) of P300 and applied it in lie detection to increase the classification
accuracy. Thirty-four subjects were divided randomly into guilty and innocent groups, and the EEG signals on 14 electrodes
were recorded. A novel spatial denoising algorithm (SDA) was proposed to reconstruct the P300 with a high SNR based on
independent component analysis. The differences between the proposed method and our/other early published methods
mainly lie in the extraction and feature selection method of P300. Three groups of features were extracted from the
denoised waves; then, the optimal features were selected by the F-score method. Selected feature samples were finally fed
into three classical classifiers to make a performance comparison. The optimal parameter values in the SDA and the
classifiers were tuned using a grid-searching training procedure with cross-validation. The support vector machine (SVM)
approach was adopted to combine with an F-score because this approach had the best performance. The presented model
F-score_SVM reaches a significantly higher classification accuracy for P300 (specificity of 96.05%) and non-P300 (sensitivity
of 96.11%) compared with the results obtained without using SDA and compared with the results obtained by other
classification models. Moreover, a higher individual diagnosis rate can be obtained compared with previous methods, and
the presented method requires only a small number of stimuli in the real testing application.
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Introduction

Research into lie detection has drawn a substantial amount of

attention over the past several decades and has found many

important applications in the legal, moral and clinical fields [1–3].

Currently, a number of studies that adopt neurophysiological

signals have been conducted on lie detection. These methods have

used Magnetic Resonance Imaging [4,5] and Event-Related

Potentials (ERPs) [6,7]. P300, an endogenous ERP component,

has been extensively investigated [8] and has been successfully

used for deception detection [9].

Widely used P300-based lie detection methods can be roughly

divided into three categories: the bootstrapped amplitude differ-

ence (BAD) [10,11], the bootstrapped correlation difference (BCD)

[12] and machine learning methods [7,13,14]. For the methods

listed above, there are three types of stimuli that are presented to

subjects, i.e., Probe (P), Target (T) and Irrelevant (I) stimuli [7].

A good lie detection method should use a small number of

stimuli to achieve as high accuracy as possible. To realize this goal

for the P300-based lie detection, a critical step is to extract the

P300 with a high signal/noise ratio (SNR). Although the P300 is

time- and phase-locked to experimental stimuli, the extraction of

the P300 with a high SNR is still a challenging task because

various types of noise are superimposed seriously on P300 [15].

BAD and BCD use the statistical technique of bootstrapping [16]

to generate many different averages of ERP from the same set of

stimuli [7]. Using bootstrapping, the SNR of P300 can be

increased. However, such a mode involves a large number of

stimuli and hence is at the expense of taking a longer time for

signal acquisition, which would also increase the fatigue of the

subjects. In addition, more recently, a few researchers have

investigated single trial-based lie detection methods that were

based on machine learning [7,14]. In these methods, some features

were extracted from single trials and then were used to train

classifiers to differentiate between different brain states. The

testing results showed that machine learning methods could

achieve a higher detection accuracy than BAD and BCD methods

[7]. However, they typically did not remove the noises embedded

in single trials, resulting in unsatisfactory detection accuracy.
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Consider the noises embedded in single trials for P300

extraction. The EEG recording on one sensor consists of two

main parts. One part is extra-skull noise, and the other part is the

signal produced by intra-skull neuronal sources at specific brain

regions, including ERP and spontaneous EEG. Obviously, the

ERP cannot be represented by the signal from the sensor directly.

Conventional lie detection methods could not separate P300 from

the noise and spontaneous EEG because their time courses and

scalp projections usually overlap [17]. Recently, independent

component analysis (ICA), a blind source separation (BSS) method

[15,18–20], was used to extract stimulus-related ERP into

independent components (ICs) [21–24]. The results showed that

the decomposed ICs were more distinguishable than the ‘‘sensor

signals’’ [22,23]. In our early study [25], we proposed an ICA-

based template matching method, topography-template matching

(TTM) algorithm, to enhance the SNR of P300, and we achieved

promising results. In TTM, we only consider the P300 indepen-

dent sources affect in Pz site. In addition, one neurophysiologist

was employed to select the P300 independent source by his

experience. In this study we present a novel spatial denoising

algorithm (SDA) to improve that early study. Comparing with our

early study, SDA consider more affecting areas including at P3,

P4, Pz, Cz and Oz sites. In addition, SDA recognized P300

independent source automatically, not by experience. Hence, the

SDA is more reasonable and objective than the early study. The

key innovation is how to automatically identify the P300 ICs (i.e.,

the ICs accounting for the P300), which will be described in the

following section.

By removing any redundant features, feature selection can help

the original classification system to achieve better classification

performance including lower computational costs and higher

classification accuracy. Polat et al. indicated that feature selection

improves the classification accuracy by using a hybrid system of

feature selection and several classifiers [26]. In this study, the F-

score [38], a simple but effective technique, was used to select the

optimal features from the original extracted features. In addition,

to select a suitable classifier, all of the training samples with the

selected optimal features were fed into three popular classifiers to

compare their performance.

For conventional lie detection like BCD/BAD [10–12] and

other some lie detection methods [7,13], a number of stimuli were

required to present to the subjects in practical applications,

because both of the bootstrapping technique and threshold

selection-based classification were based on many stimuli respons-

es. This would limit the real application of lie detection. First, there

is often very limited information related to criminal acts. Second,

many repeated stimuli with little information would cause two

problems. One problem is fatigue, and the other is an increase in

the countermeasures [11], because real criminals might be familiar

with the stimuli and tend to resist the detection when many stimuli

are presented repeatedly. Furthermore, based on the analysis

results from a number of stimuli, when the researcher need to

make the last judgment, a threshold strategy (see the references

[10–12,7,13] for details) was inevitably used, which was a

subjective decision on the individual diagnostic rate. The present

method aims at using only a small number of stimuli and having

no threshold problem.

Materials

Ethics statement
The experiment was approved by Psychology Research Ethical

Committee (PREC) of the College of Biomedical Engineering in

South-Central University for Nationalities. Thirty healthy subjects

(15 females, mean age of 21.5) were recruited from the university.

The participants provided their written informed consent accord-

ing to a human research protocol in this study.

EEG Data Acquisition
Twelve electrodes (Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3, Pz, P4,

Oz) from an International 10–20 system were used. The vertical

EOG (VEOG) signal was recorded from the right eye (2.5 cm

below and above the pupil), and the horizontal EOG (HEOG)

signal was recorded from the outer canthus. EEG and EOG

signals were filtered online with a band pass filter of 0.1–30 Hz,

and they were digitized at 500 Hz using Neuroscan Synamps. All

of the electrodes were referenced to the right earlobe. Electrode

impedances did not exceed 2 kV.

Experimental Protocol
The standard three-stimuli protocol [10,12] was employed in

this study. The participants were randomly divided into two

groups: a guilty group and an innocent group. Six different jewels

were prepared, and their pictures served as stimuli during

detection. A safe that contained one (for the innocent) or two

(for the guilty) jewels was given to each participant. They were

instructed to open the safe and memorize the details of the object.

We instructed the guilty group to steal only one object which

would serve as the P stimulus. The other object in the safe was the

T stimulus, and the remaining four pictures were the I stimuli. The

object in the safe was not stolen for the innocent, which served as

the T stimulus. Then, from the remaining five pictures, one

picture was selected randomly and set as the P stimulus, and the

remaining four images were set as I stimuli. All of the subjects were

instructed to write down the information on the objects in the safe,

such as the styles and colors of the jewels.

After the preparation tasks introduced above, the participants

began to perform the detection. They were seated in a chair,

facing a video screen that was approximately 1 m away from their

eyes. The stimuli pictures were presented randomly on the screen.

Each item remained for 0.5 s with 30 iterations for one session,

and each session lasted for approximately 5 minutes, with

2 minutes of resting time. The inter-stimulus interval was 1.6 s.

Each subject was instructed to perform 5 sessions. The stimuli

sequence diagram is given in Figure 1. One push button was given

to each subject, and he or she was asked to press a ‘‘Yes’’ and

‘‘No’’ button when faced with familiar and unknown items,

respectively.

The guilty group was instructed to press the ‘‘Yes’’ and ‘‘No’’

button when faced with the T and I stimuli, respectively. With a P

stimulus, they were asked to press the ‘‘No’’ button, attempting to

hide the stolen act. In contrast, the innocent group made honest

responses to all of the stimuli. All of the subjects had practiced the

tasks above before the EEG signals were recorded formally. We

planned to exclude any subjects that had more than a 5% clicking

error, but none fell into this category. Finally, a sketch map is

presented and shown in Figure 2 to describe above protocol.

Methods

General description of method
The present method is separated into the following steps: (1)

preprocess the continuous raw EEG recordings, and then, apply

SDA on the preprocessed datasets to reconstruct P300 waves that

have a higher SNR (from the guilty) and non-P300 waves (from

the innocent). For convenience, we hereafter describe the above

processed results as reconstructed P300 waves (In fact, the results

also contain non-P300 waves); (2) extract original features from the

Spatial Denoising Method for P300 to Detect Liars
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reconstructed waves; (3) adopt the F-score method to select the

optimal features; these features were concatenated as a featured

vector and fed into three kinds of typical classifiers; (4) train the

classifiers using the two classes of training samples, and then, test

the samples using testing samples. By the training procedure, the

optimal parameter values including the parameter in SDA and in

specific classifier can be determined. During a practical applica-

tion phase, only several stimuli (Five probe stimuli were needed in

this study) are presented to the subjects. The flowchart of the

presented CIT system is shown in Figure 3.

Preprocessing
Using EEGLAB toolbox, we segmented the continuous EEG

data into epoched datasets, each of which lasted from 0.5 s before

to 1.1 s after the stimulus onset. Then, the ocular artifacts [24] in

each set were removed by the software SCAN of Neuroscan, i.e.,

the datasets that contained single trials with the voltage in excess of

+75mv were discarded. All of the remaining trials were baseline

corrected on the pre-stimulus interval. Lastly, the datasets

corresponding to P responses were selected, and each 5 datasets

within each subject was pooled into one average, resulting in 450

averaged datasets for each subject group.

Independent component analysis

Let X(t) = x1(t),x2(t),:::,xC(t)½ �T denote the observed time series

with t varying from 1 toN , where N and Cdenote the number of

samples and sensors, respectively. In ICA method, X(t) is the result

of an unknown mixture of a set of unknown source signals S(t)

= s1(t),s2(t),:::,sC(t)½ �T , and the mixture is viewed as linear: X(t)

= AS(t). Based on the principle of statistical independence [26–27],

ICA estimates S(t) by introducing the unmixing matrix W, i.e.,

Z(t) = WX(t) where Z(t) (which is the decomposed ICs) is the

estimation of signals S(t). Accordingly, W{1 is referred to as a

mixing matrix. Once the signals S(t) are estimated by an ICA

algorithm, a column of the matrix W{1 provides the projection

strengths of the corresponding IC onto each electrode.

Spatial denoising algorithm for P300 enhancement
The spatial denoising algorithm, referred to as SDA hereafter, is

described in this section. First, each averaged dataset was

decomposed by ICA, resulting in mixing matrix W{1 and

decomposed ICs Z(t). The extended infomax algorithm (EICA)

was used in ICA because it can allow some sources to have sub-

Gaussian distributions [28,29]. By accommodating sub-Gaussian

distributions in the data, EICA could provide a more accurate

decomposition of multi-channel EEG signals, especially when

various neurophysiological signals follow different distributions.

Many investigators have found that P300 was usually the largest

at Pz, the smallest at Fz, and takes intermediate values at Cz

[30,32]. They typically acquired the P300 on one of the electrodes

listed above [7,9,11,31]. According to the a priori physiological

knowledge described above and the spatial distribution of an IC,

SDA is divided into the following four steps:

(1) Let zj denote the jth IC in matrix Z(t). Denote the ith row jth

column element inW{1 by W{1
ij , and accordingly the jth

column by W{1
.j . First, each matrixW{1is normalized to the

matrix U by

Uij~DW{1
ij D
.

max (DW{1
.j D), i~1,2,:::,14; j~1,2,:::,14 ð1Þ

where symbol DD denotes an absolute calculation. Let X
0
(t) denote a

new EEG dataset, which was defined by

X
0
(t)~UZ(t)~

u11 � � � u1j � � � u1n

..

.
P

..

.
P

..

.

ui1 � � � uij � � � uin

..

.
P

..

.
P

..

.

un1 � � � unj � � � unn

2
666666664

3
777777775

z1(t)

..

.

zj(t)

..

.

zn(t)

2
666666664

3
777777775
ð2Þ

(2) Let Pz, P3, P4, Cz and Oz equal their respective sequence

number in the electrode set (e.g., Pz equals 10 in this study).

For the jth column in each matrix U, we calculate a value Sj

using the following formula:

Sj~UPzjzk1 � (UP3jzUP4j)zk2 �UCzjzk3 �UOzj , ð3Þ

where the parameters k1, k2 and k3 denote the weighted

parameters on different element Uij . A grid-search procedure

(see Figure 3) would be used to obtain optimal values of these

Figure 1. The stimuli sequence diagram.
doi:10.1371/journal.pone.0109700.g001
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parameters. In this equation, Sjdenote the integrated distribution-

strength on several interested brain areas from jth IC. The bigger

Sj is, the bigger probability jth IC is the P300 ICs.

(3) Sort the 14 values in S~ S1,S1,:::,S14f g in descending order,

resulting in a sorted vector E and a sorted index vector F, with

Fj being the position of the element in vector S.

(4) Back projection: Let m denote how many P300 ICs should be

selected to reconstruct the P300 wave. Suppose that Ypz
(t) is

the reconstructed P300 wave on the Pz electrode. The

procedure of back projection for Ypz
(t) can be given by

Ypz (t)~
Xm

j~1

W{1
PzFj

|ZFj
(t), ð4Þ

i.e., only m ICs are considered as P300 ICs and are back projected

to the scalp.

A grid-search procedure (see Figure 3) will be used to determine

the optimal value of parameter m, which will be discussed later.

Figure 2. The sketch map of stimuli protocol. The left part and right parts of the dashed line represent the experimental protocol for guilty and
innocent subjects, respectively. The pictures with red, blue and green rectangles represents P, T and I stimuli, respectively.
doi:10.1371/journal.pone.0109700.g002
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Lastly, for two groups of subjects, two sets of the reconstructed

waves can be obtained, respectively. Let R–G denote the vector set

for the guilty group, and let R–I denote for the innocent group.

We expect that the SNR of P300 in the set R–G would be

enhanced compared with the raw ERP signal, using the above

SDA.

Feature extraction
Let Y(t) denote a time wave in the set R–G or R–I, with t

varying from stimulus onset to 1.1 s after the stimulus onset. Time-

domain, frequency-domain and wavelet features were selected as

three groups of features in this study. Most of them have been

demonstrated to be effective by many researchers [7,25,33–35].

The features are extracted from each signal Y(t) by the following

procedure.

Time-domain features. Four time-domain features are

defined as follows:

(1) Maximum amplitude, which is defined as

Vmax~ max Y(t)f g ð5Þ

Figure 3. The flowchart of the presented CIT system.
doi:10.1371/journal.pone.0109700.g003

Spatial Denoising Method for P300 to Detect Liars

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e109700



(2) Latency, which is the time where Vmax occurs. It takes the

form

tmax~ tDY(t)~Vmaxf g ð6Þ

(3) Peak-to-Peak, which is defined as

Vptp~Vmax{Vmin ð7Þ

(4) Positive area, which is the sum of the positive signal values. It

can be expressed as

Ap~
X1600

t~500

0:5(Y(t)zDY(t)D) ð8Þ

Frequency-domain features. The power spectrum density

(PSD) is first calculated on each Y(t) by the Bartlett algorithm. Let

p(f ) be the resultant PSD. Suppose that pmax~ max p(f )f g
denotes the maximum amplitude value of the PSD. Then 3

frequency-domain features can be calculated as follows:

(1) Maximum frequency, i.e.,

fmax~ f Dp(f )~pmaxf g ð9Þ

(2) Mean frequency, calculated by the weighted average of the

frequency. The weighted coefficient is the PSD value. It can

be expressed as

fmean~

ð250

0

f |p(f )df

�ð250

0

p(f )df ð10Þ

(3) The power of the main frequency band that involves the

P300, which is calculated by

Alf~

ð5

0:05

p(f )df ð11Þ

Wavelet features. Many authors have indicated that ERPs

are transient signals that include some typical frequency compo-

nents in a different frequency range, such as delta, theta, alpha,

beta and gamma [36]. Recently, the wavelet transform (WT) has

been widely used to analyze ERPs [36–38]. The WT is achieved

by the breaking up of a signal into shifted and scaled versions of

the mother wavelet, which is a waveform that has a limited

duration and a zero mean.

In this study, a fast algorithm for the Discrete WT (DWT) was

adopted to decompose those averaged single trials [39]. We

selected Quadratic B-Spline functions as mother wavelets because

they have a near-optimal time-frequency localization property and

good similarity with the P300 components [40–41]. The wavelet

coefficients were computed by a high-pass filter h and a low-pass

filter g. The coefficients of two filters are given in the first and

Table 1. Coefficients of the truncated decomposition filters h, g (IIR) and reconstruction filters H, G (FIR) for quadratic spline filters.

e h(e) g(e) H(e) G(e)

210 +0.00157 20.00388

29 +0.01909 20.03416

28 20.00503 +0.00901

27 20.04440 +0.07933

26 +0.01165 20.02096

25 +0.10328 20.18408

24 20.02593 +0.04977 +1/480

23 20.24373 +0.42390 229/480

22 +0.03398 20.14034 0.25 +147/480

21 +0.65523 20.90044 0.75 2303/480

0 +0.65523 +0.90044 0.75 +303/480

1 +0.03398 +0.14034 0.25 2147/480

2 20.24373 20.42390 +29/480

3 20.02593 20.04977 21/480

4 +0.10328 +0.18408

5 +0.01165 +0.02096

6 20.04440 20.07933

7 20.00503 20.00901

8 +0.01909 +0.03416

9 +0.00157 +0.00388

doi:10.1371/journal.pone.0109700.t001
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second columns of Table 1, respectively. The reconstruction filters

H and G can be used to inversely transform the wavelet

coefficients to time-domain waveforms. The third and fourth

columns of Table 1 give the coefficients of the two reconstruction

filters, respectively.

DWT was performed on each wave Y(t), which resulted in

seven sets of wavelet coefficients corresponding to different

frequency bands: 0.3–3.9, 3.9–7.8, 7.8–15.6, 15.6–31.2, 31.2–

62.5, 62.5–125 and 125–250 Hz. Only the first four bands were

useful due to the earlier filtering. Because the delta band was the

main frequency range for the P300 component, the coefficient set

corresponding to the first frequency band was selected as the final

wavelet features for each wave Y(t).
Following the feature extraction, these feature samples were

divided into two sample sets: the first set contained all of the P300
samples for the guilty group, and the second set contained non-
P300 samples for the innocent group, with the class label being 1

and 21, respectively.

Feature Selection
In this study, we adopted the F-score method to further select

the best subset of features for classification. The F-score method is

a very simple but robust feature-evaluating technique. Recently,

many researchers have successfully used this method in pattern

recognition systems to select the optimal feature subset [42,43].

Given the ith feature vector fxi1,xi2,:::,xinz
,:::,xiBg with the

number of positive instances n+ and the number of all of the

instances B, the F-score value of the ith feature is defined by

F ið Þ~ (�xx(z)
i {�xxi)

2z(�xx({)
i {�xxi)

2

1
nz{1

Pnz

k~1

(xik{�xx(z)
i )2z 1

B{nz{1

PB
k~nzz1

(xik{�xx({)
i )2

, ð12Þ

where �xx(z)

i ,�xx({)

i , and �xxi are the average of the positive, negative,

and whole samples, respectively, and xik is the kth feature value in

the ith feature vector. Positive and negative represent two classes

of identification, respectively. A larger F-score value indicates that

the feature has more discriminative power. For the application of

this method, the F-score value of all of the features will be sorted.

Hence, in this study, those features that have relatively larger F-

score values were selected to construct the feature subset.

There are two main methods used to select the appropriate

feature subset: the filter method [44] and the wrapper method

[45,46]. To obtain simplicity and a lower computation cost, we

used the former method to select the feature number for the

optimal feature subset.

Classification
The fisher discriminant analysis (FDA) [47], back propagation

neural network (BPNN) [48] and support vector machine (SVM)

[49,50] were compared in this study to select an optimal classifier.

The details of the three classifiers are given in Supporting

information files (see Section S1–S3 in File S1). The hybrid models

integrating with F-score feature selection is referred to as F-

score_FDA, F-score_BPNN and F-score_SVM in this study.

Accordingly, three individual classification models (FDA, BPNN

and SVM) were also utilized.

A Subject-Wise CV (SWCV) [25,51] was performed on the two

classes of optimal feature sample sets. For each set, samples from

14 subjects were grouped into a training set and the samples from

the remaining were used as a testing set. Thus by this SWCV, 15

pairs of training sets and testing sets were obtained. For each pair,

the training set consisted of the samples from 28 subjects, and the

testing set from 2 subjects (i.e., a guilty and an innocent subject).

We would like to emphasize the importance of the SWCV

procedure. In fact, a statistical classification model that could

explain the data for some subjects did not necessarily generalize

well to other subjects, even if those were draw from the same

distribution. Accordingly, the SWCV procedure was used to assess

the generalization ability not only from the different data within

one subject but from the data in different subjects. Hence, the

advantage of SWCV compared with common CV is that the test

accuracy can simulate the generalization performance on other

unseen subjects. Accordingly, we can obtain the testing results not

only on the level of single-trials, but also on the level of subjects,

i.e., to test whether one subject can be recognized correctly.

For each training set yielding by SWCV, the feature samples

were mixed to obtain two classes of samples: one is lying group (it

was considered as P300 feature samples) and the other is truth-

telling group (it was considered as non-P300 feature samples).

Subsequently, a common 10-fold CV procedure [52] was

performed on each training set, resulting in 10 pairs of sub-

training sets and sub-validation sets. Figure 4 shows the schematic

diagram of the division of samples and cross validation procedure.

Selection of optimal parameters
For the proposed lie detection method, two groups of

parameters must be tuned: 1) The parameters in SDA: m, k1,

k2 and k3, and 2) The specific hyperparameters for each classifier.

Considering that the parameters in SDA can affect the optimal

values of the hyperparameters, the two groups of parameters were

tuned together using a multi-dimension grid searching. During the

turning, m varied from 1 to 14; and k1, k2 and k3 varied from 0.2

to 1 with a step size of 0.15, by the suggestion of an independent

EEG expert. In the tuning procedure above, for BPNN, the

number of sigmoid hidden nodes a and the learning rate g were

tuned (the control precision was set to be 0.002). For SVM, the

penalty parameter C and the radial width sfor radial basis

function (RBF) (K(x,y)~e{1=2� x{yk k=sð Þ2 , [52]) were tuned. The

procedure of training and testing is described as follows:

(1) The classifiers were trained on each sub-training set with

different combinations of tuning parameters. By the 10-fold

CV, an averaged sensitivity and an averaged specificity can be

obtained for the jth training set. Then, the mean and

Standard Deviation (SD) of the 15 sensitivities (15 training

Figure 4. The division of feature samples using SWCV and 10-
fold CV. The red rectangle denotes training set, whereas the green
rectangle denotes testing set by the division of SWCV; Training set is
further divided into sub-training set and sub-validation set by common
10-fold CV.
doi:10.1371/journal.pone.0109700.g004
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sets), referred to as Masen and SDasen respectively, are

calculated. Similarly, the Maspe and SDaspe for specificity

a r e o b t a i n e d . L a s t l y , b a l a n c e d a c c u r a c y
BA train~ 1

2
(MasenzMaspe) is calculated for the specific

combination of tuning parameters.

(2) Repeat the above steps using a different combination of

tuning parameters. Thus, the optimal parameter values were

selected when BA train reached the highest value.

(3) On the 15 testing sets, calculate the generalization perfor-

mance of the trained classifiers with the optimal parameter

values. Similar to step 1, Mtspe and SDtspe (mean and SD on

the 15 sensitivities), Mtsen and SDtsen (on the 15 sensitivities)

can be obtained. Finally, calculate the balanced testing

accuracyBA test~ 1
2

(MtsenzMtspe). This accuracy is the

final testing measure of the performance evaluation.

Results

Preprocessing
The grand average ERPs on the Fz, Cz, Pz and Oz sites as a

function of stimulus type were first calculated within each subject.

Figure 5 gives the boxplot of the maximum amplitude at the Pz

site for three types of stimuli and the two subject groups, during

which 450 samples for each type of stimuli and each group were

used to statistical analysis. Using ANOVA on the guilty subject,

there is no significant difference (p.0.05) for the maximum

amplitude between the P and T stimuli. However, there is a

significant difference (p,0.001) between P and I stimuli. In

contrast, there is no significant difference (p.0.05) between the P

and I stimuli for an innocent subject.

A 2|2 mixed model ANOVA (P vs. I | innocent vs. guilty)

was performed on the maximum amplitude at the Pz site. The

result shown in Figure 6 revealed significant main effect of

innocent versus guilty, F(1, 28) = 772.467, p,.0005 and P versus I,

F(1, 28) = 761.201, p,.005. There is also significant interaction

between innocent versus guilty and P versus I, F(1, 28) = 753.430,

p,.005.

More importantly, by a further independent effect analysis of

innocent versus guilty when P stimuli was used, the person type

effect is significant and yields F(1,28) = 1514.68, p,.0005. The

amplitude of P300 for the guilty is higher than that for the

innocent. In contrast, when using I stimuli, there is no significant

person effect (F,1). Hence, P responses at the Pz site were finally

selected for further processing to enhance the feature difference of

the P300 waves between the two classes of subjects.

SDA
First, the enhancement of the SNR of P300 by SDA is

illustrated in Figure 7. A guilty subject’s five raw EEG datasets

were randomly taken as an example. The raw waves on the Pz

with solid thin line and their averaged wave with dashed thick lines

are shown in Figure 7A. Similarly, we randomly selected an

innocent subject, and the raw waves and averaged wave on Pz are

shown in Figure 7B. Applying SDA to the two averaged datasets

respectively, the two reconstructed P300 waveforms on Pz are

shown in Figure 7C. There is no distinct P300 (dashed lines) in

Figure 7A and 7B. As Figure 7C shows, however, there is a clear

P300 with a latency of approximately 280 ms for the guilty subject,

and the two lines can be differentiated easily. During this

evaluation, the parameters m, k1, k2 and k3 were set to 3, 0.9,

0.8, 0.6 by a priori knowledge of an independent physiology

expert.

Extraction of Wavelet Features
After SDA, the features were extracted from the reconstructed

waves for the Pz. Here, we randomly selected a guilty and an

innocent subject, and then conducted the wavelet transform on

two subjects’ denoised P300 signals, respectively. The results of

DWT are shown in Figure 8A and 8B respectively. The most

distinct difference in the wavelet features and reconstruction waves

between the two subjects is in the 0.3–3.9 Hz band (the delta

band). For the guilty subject, it can be seen from the bottom row in

Figure 8A that there are obvious peaks in the wavelet coefficients

and reconstruction waves at approximately 500 ms post-stimulus

for this band. This approach is in accordance with the time-

domain features of the P300 waveform. In contrast, there are no

obviously corresponding features in Figure 8B. The results above

suggest that the wavelet coefficients corresponding to the delta

band, as a class of P300 features, are suitable for differentiating the

P responses between the two groups of subjects.

Result of the feature selection
Table 2 shows the results of the feature selection by the F-score

method. W1–W22 denotes 22 WT coefficients. From this table, we

can see the F-score values of the 29 original features. Those

features with relatively larger F-score values were selected to

construct a feature subset. For simplicity, we directly selected 10

features whose F-score values were larger than 0.85 to form the

optimal feature subset.

Observing these 10 features, we can see that two optimal time-

domain features are closely related to the peak value of P300.

Second, one feature (Alf) is related to the main frequency range of

P300 (0.3–3.9 Hz). Most importantly, the most of optimal features

are selected from the original wavelet features. This indicates the

wavelet feature has the better classification capability than the

other two kinds of features.

Classification Performance
Using SWCV, BA train reaches the highest value, 96.18%,

using the F-score_SVM, and the optimal parameters of m, k1, k2,

k3, which are determined by grid searching, are as follows: m = 2,

k1 = 0.85, k2 = 0.70 and k3 = 0.40. The training accuracies as a

function of the parameter m were shown in Figure 9A and 9B for

the three hybrid models when k1 = 0.85, k2 = 0.70 and k3 = 0.40.

As shown in Figure 9, the accuracy rates increase significantly

when m changes from 1 to 2 for all of the models. For example, the

increased rate for F-score_SVM is approximately 5%. In addition,

the accuracies of F-score_FDA and F-score_SVM reach a

maximum when m = 2 except for F-score_BPNN, whose accuracy

still increases slightly as m varies from 2 to 3. More importantly,

the accuracy rates decrease when more than 3 ICs are used in

SDA. This result is basically consistent with the report of Lin et al.

[53]. Note that the accuracies with m = 14 denote the performance

without the SDA. For every classification model, those accuracies

are distinctly much lower than those when m = 2. The results

discussed above indicate the remarkable performance of SDA.

Furthermore, Table 3 gives the training accuracies

(Masen,Maspe) and testing accuracies (Mtsen,Mtspe) of the six

classification models with the optimal grid searching result. First,

the accuracy of the model using FDA is obviously lower than the

models using BPNN and SVM. This finding suggests that the data

from the two types of subjects in the lie detection cannot be

separated linearly. Additionally, the performance of the models

that use SVM significantly exceeds those of the models that use

FDA and BPNN. Using ANOVA, the statistical results (F(1, 28)

= 7396.689 and p,0.001) confirm that the testing accuracy for

SVM is significantly greater than that for BPNN. The BA_test of

Spatial Denoising Method for P300 to Detect Liars
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96.08% for F-score_SVM strongly suggests that it is suitable for

the classification of the two classes of subjects. Additionally, we can

see from Table 3 that each hybrid model achieves significantly

higher accuracy than the corresponding individual model. For

example, on the training sets, SVM reaches a sensitivity and

specificity of 91% and 90.98%, respectively. In contrast, F-

score_SVM obtains 96.07% and 96.30%, respectively. Based on

the above experimental results, the model F-score_SVM reaches

the highest classification performance of all of the models.

Comparison with previous methods
The individual diagnostic rates of the presented and previous

methods were calculated, and they were compared in this section.

In the BAD/BCD method, each 10 waveforms of each type of

response on the Pz electrode were selected to average into a

waveform, based on the technique of bootstrapping. In the BAD

method, the P300 amplitudes of the three types of responses were

calculated based on the Peak-to-Peak method [7,13,54]. For the

BCD method, the time lag was equal to 0 when the CV was

calculated.

For the BAD and BCD methods, we calculated 100 D-values

obtained by 100 iterations for each subject. Let Nd denote the

times when the D-values were larger than zero. Then Nd and the

Figure 5. Boxplot of the maximum amplitude of P300 at Pz in different stimuli and subject groups.
doi:10.1371/journal.pone.0109700.g005

Figure 6. Maximum P300 amplitude at Pz as functions of
person type (guilty and innocent) and stimuli type.
doi:10.1371/journal.pone.0109700.g006
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percentage of Nd were calculated for each subject, respectively. If

the percentage of Nd was greater than a threshold Nth, then this

subject would be considered to be a guilty subject [7,12]. Lastly,

the error rates of an individual diagnosis as a function of the setting

threshold are shown in Figure 10A and 10B, respectively.

Considering the equal importance of the detection rates of the

two groups of subjects, the individual diagnostic rates of 92% and

Figure 7. Response waveforms and reconstructed waveforms on Pz after applying SDA for a guilty and an innocent subject. 7A:
Single trials (solid lines) and averaged waveform (dashed line) on Pz for a guilty subject before applying SDA. 7B: Single trials (solid lines) and
averaged waveform (dashed line) on Pz for a guilty subject before applying SDA. 7C: Reconstructed waveforms (a P300 for the guilty subject and a
non-P300 for the innocent subject) by applying SDA on the averaged datasets.
doi:10.1371/journal.pone.0109700.g007
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88.71% are reached when the thresholds are set to 83.6% and

85.5% for the BAD and BCD methods, respectively.

Based on the results in the above section, for our method, in

fact, the individual diagnostic rate can reach 100% when choosing

the test accuracy of 90% as a decision criterion for a subject. That

is, one was identified as a liar when the percentage of

reconstructed samples classified as P300 was larger than 90%. In

contrast, one was a truth-teller if the percentage of reconstructed

samples classified as non-P300 was larger than 90%. Obviously,

this diagnostic rate is higher than the rates of the BAD and BCD

methods, and is also higher than those reported using other

machine learning-based methods. For example, Abootalebi et al.

[7] reported that the best detection rates are 74%, 80% and 79%

for BAD, BCD and the machine learning methods, respectively.

Discussion and conclusions

Lie detection methods using a large number of stimuli suffer

from several inherent drawbacks such as more fatigue for subjects,

more workload for examiners, increased probability of counter-

measure behavior and lower flexibility [25,55]. Obviously, a lie

detection method with only a small number of stimuli will be

crucial for practical lie detection. The purpose of this study is to

develop a novel detection method that uses several stimuli to

Figure 8. The wavelet coefficients in 4 bands and corresponding reconstructed waveforms. 8A: The original EEG waveforms on Pz for a
guilty subject (above panel), its wavelet coefficients (left column) and corresponding reconstruction waves (right column). 8B: The original EEG
waveforms on Pz for an innocent subject (above panel), its wavelet coefficients (left column) and corresponding reconstruction waves (right column).
doi:10.1371/journal.pone.0109700.g008

Table 2. The results of feature selection on original 29
features using F-score.

Features F-score values

Vmax 0.937

tmax 0.567

Vptp 0.877

Ap 0.268

fmax 0.049

fmean 0.340

Alf 0.873

W1–W5 0.085, 0.005, 0.311, 0.011, 0.099

W6–W10 0.008, 0.184, 0.106, 0.077, 0.381

W11–W16 0.977, 0.524, 0.255, 0.835, 0.820, 0.947

W17–W22 0.905, 0.937, 0.881, 0.959, 0.871, 0.838

doi:10.1371/journal.pone.0109700.t002
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identify the liars, and at the same time, to further increase the

individual diagnostic rate and robustness compared to previous

studies. For this purpose, we proposed a novel ICA-based SDA to

enhance the SNR of P300, and then, we used a machine learning

method to distinguish the P300 evoked by guilty subjects from the

non-P300 in innocent subjects.

Some recent studies suggested that machine learning-based lie

detection methods are more reliable than the BAD and BCD

methods. One advantage is that the investigation of the dynamic

variation of single trials might help us to study more cognitive

information on lying. The second major advantage lies in that the

failure of one trial will not affect the classification results of the

other trials. In contrast, for BAD and BCD, the failure will change

many bootstrapping averages and hence, the overall result of the

lie detection [7]. Third, one can utilize more features of P300 in

addition to the time-domain features that are used in the BAD/

Figure 9. The accuracy (mean + SD) of classifying P300 (sensitivity) and non-P300 (specificity) for three classification models with
different parameter value m on training sets (when k1 = 0.85, k2 = 0.70 and k3 = 0.40). 9A: Sensitivity for the training sets. 9B: Specificity for
the training sets.
doi:10.1371/journal.pone.0109700.g009

Table 3. Sensitivity/specificity on the training and testing sets for different classification models with the optimal parameter
combination.

Classifier models Sensitivity/specificity (%)

Training (Masen+SDasen=Maspe+SDaspe) Testing (Mtsen+SDtsen=Mtspe+SDtspe)

FDA 68.3862.13/67.2261.94 FDA

BPNN 79.2761.66/78.7861.72 BPNN

SVM 91.0061.80/90.9861.85 SVM

F-score_FDA 74.6561.57/74.1961.70(m) F-score_FDA

F-score_ BPNN 85.9761.60/85.6061.66(*) F-score_ BPNN

‘‘m’’ denotes that a p-value of ,0.001 was obtained by ANOVA between F-score_FDA and F-score_SVM; ‘‘*’’ denotes that a p-value of ,0.001 was obtained by ANOVA
between F-score_BPNN and F-score_SVM; for BPNN, the number of hidden nodesa = 5, and the learning rate g = 0.03; for SVM, radials = 32, and penalty parameter
C = 28.
doi:10.1371/journal.pone.0109700.t003
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BCD method. Lastly, note that, in previous methods, it is difficult

to decide the related thresholds such as the Nth described earlier

because this decision involves the tradeoff between the two

individual diagnostic rates from the two groups of subjects. In

contrast, we can see that this problem does not exist in our

method.

In the present study, we assumed that for a P300-based lie

detection method, the noise in the single trials could be divided

into two categories: one is the ill-assorted responses to a certain

type of stimulus, which results from a variation of cognitive state

during detection [55]; the other is normal noise such as EOG

artifacts and spontaneous EEG. Hence, before applying SAD, we

first averaged each 5 raw EEG datasets to decrease the impact of

ill-resorted P3009s on the SNR of P300, which would increase the

robustness of the entire system for lie detection. The efficiency of

this preprocessing method for lie detection is not addressed in this

study because it has already been proven in the previous report

[55]. To reduce the influence of the second type of noise on the

performance of the detection to the greatest extent, we proposed a

novel SDA to separate the P300 components from the other noise

signals, constructing new Pz waves with the more obvious P300

features; this process can be viewed as a spatial filter for the P300.

Previously, we introduced a topography-template matching

(TTM) method [25] to reconstruct P300 waveforms that have a

higher SNR. TTM was based on correlation theory of the

topography of the ICs. SDA differs from the TTM method in the

construction algorithm. SDA is computationally efficient to

implement. Hence SDA could decrease the training and testing

time. In addition, the classification accuracy of the presented

method is higher than that in the report [25]. For the sake of

brevity, we have not compared the efficiency of these two methods

here and the comparison will be addressed in future studies.

For SDA, the experiment results show that the detection

accuracy is the highest when 2 (or 3) P300 ICs are selected to

reconstruct the Pz waveform. This finding might indicate that 2 or

3 neural sources are responsible for the task of responding to the P

stimuli. This inference deserves further study. In addition, we

deemed that the physiology meaning of three parameter values of

k1, k2and k3 can be interpreted as follows. A realistic P300 IC

(unknown P300 independent neural source under scalp) should

have different distributed weight on different brain scalp areas.

Comparing three k values, P300 IC has biggest distributed weight

on P3 and P4, medium on Cz and least on Oz scalp areas.

It is worth mentioning that, even though only the waves on the

Pz were finally used to extract features, 14 electrodes were still

selected to run ICA in order to guarantee the efficiency of the

EICA algorithm and SDA. Using ICA has another advantage in

that it can help remove the ocular artifacts automatically in the

preprocessing phase [24], which few previous studies of lie

detection have addressed [56–58]. Using SDA to remove ocular

artifacts simultaneously will be investigated in the future.

It should be acknowledged that the procedure for tuning

parameters in the present study is complicated and time-

consuming. However, once these optimal parameter values were

selected by the grid searching method on the training sets, they

would be kept stable for the testing and real applications. We

assumed, for example, that the parameter m represents the volume

conduction feature of the neurons accounting for the P300 on the

scalp, which is thought to be relatively stable spatially [31]. Using

other parameter optimization methods [52,59] is also possible. We

will evaluate this approach in future work.

Using the presented method, only 5 Probe stimuli (together with

some Target and Irrelevant stimuli) must be presented to the

subject in real applications. This arrangement is attractive and

promising for practical applications. Moreover, to increase the

reliability of the diagnoses, the examiner could perform our testing

procedure multiple times and, then, make a more accurate

decision by combining several independent testing results.

The F-score, which is a simple feature-selection method, was

combined with classifiers to choose the optimal features. The F-

score helps to decrease the feature number and, hence, to decrease

the computational burden. More importantly, the experimental

results show that it helps to enhance the classification accuracy

compared with the individual classification models, indicating the

importance of the feature selection for the classification perfor-

mance. For the sake of simplicity, we remove redundant features

by a commonly used threshold strategy. In the future, the wrapper

method should be used to improve the proposed method.

Figure 10. The detection error rates of two groups of subjects. 10A: The detection error rate of the guilty and innocent groups for BAD
method. 10B: The detection error rate of the guilty and innocent groups for BCD method.
doi:10.1371/journal.pone.0109700.g010
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Different kernel functions for SVM were not tested in this study.

It can be found that the training procedure in this study is very

complex. Hence, the selection of kernel functions was not

considered for the simplicity of the training procedure. In our

early other studies [25,55], we had tested that the radial basis

function (RBF) had the best performance than the other kernel

functions. Hence, RBF was directly used in SVM method

considering the similar lie detection researches.

The proposed method is not specific to research into lie

detection and could be extended to other fields of the ERP

classification. We believe that more sophisticated feature selection

approaches, such as genetic algorithm [7,60], could further

improve the performance of the classifier.

Supporting Information

File S1 Section S1. FDA classifier. Section S2. BPNN. Section

S3. SVM.

(DOC)

Author Contributions

Conceived and designed the experiments: JFG NNR. Performed the

experiments: YY XLY. Analyzed the data: JFG HJT CHL. Contributed

reagents/materials/analysis tools: CHL. Wrote the paper: JFG.

References

1. Gamer M, Berti S (2010) Task relevance and recognition of concealed

information have different influences on electrodermal activity and event-related

brain potentials. Psychophysiology 47(2): 355–364.

2. Ambach W, Bursch S, Stark R, Vaitl D (2010) A Concealed Information Test

with multimodal measurement. Int J Psychophysi 75: 258–26.

3. Ito A, Abe N, Fujii T, Ueno A, Koseki Y, et al. (2011) The role of the

dorsolateral prefrontal cortex in deception when remembering neutral and

emotional events. Neurosci Res 69(2): 121–128.

4. Langleben DD, Loughead JW, Bilker WB, Ruparel K, Childress AR, et al.

(2005) Telling truth from lie in individual subjects with fast event-related fMRI.

Hum Brain Mapp26(4): 262–272.

5. Phan KL, Magalhaes A, Ziemlewicz TJ, Fitzgerald DA, Green C, et al. (2005)

Neural correlates of telling lies: a functional magnetic resonance imaging study

at 4 Tesla. Acad Radiol 12(2): 164–172.

6. Rosenfeld JP (2002) Event-related potentials in the detection of deception.

Handbook of Polygraph Testing. Academic Press, New York, 265–286.

7. Abootalebi V, Moradi MH, Khalilzadeh MA (2009) A new approach for EEG

feature extraction in P300-based lie detection. Comput Methods and Programs

in Biomed 94(1): 48–57.

8. Polich J, Herbst KL (2000) P300 as a clinical assay: rational, evaluation, and

findings. Int J Psychophysi 38(1): 3–19.

9. Meijer EH, Smulders FTY, Merckelbach HLGJ, Wolf AG (2007) The P300 is

sensitive to concealed face recognition. Int J Psychophysi 66(3): 231–237.

10. Rosenfeld JP, Soskins M, Bosh G, Ryan A (2004) Simple, effective

countermeasures to P300-based tests of detection of concealed information.

Psychophysiology 41(2): 205–219.

11. Rosenfeld JP, Labkovsky E, Winograd M. Lui MA, Vandenboom C, et al. (2008)

The Complex Trial Protocol (CTP): A new, countermeasure-resistant, accurate,

P300-based method for detection of concealed information. Psychophysiology

45(6): 906–919.

12. Farwell LA, Donchin E (1991) The truth will out: interrogative polygraphy (‘‘lie

detection’’) with event-related potentials. Psychophysiology 28(5): 531–547.

13. Abootalebi V, Moradi MH, Khalilzadeh MA (2006) A comparison of methods

for ERP assessment in a P300-based GKT. Int J Psychophysi 62(2): 309–320.

14. Dvatzikos C, Ruparel K, Fan Y, Shen DG, Acharyya M, et al. (2005) Classifying

spatial patterns of brain activity with machine learning methods: Application to

lie detection. NeuroImage 28(3): 663–668.

15. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, et al. (2000a)

Removing electroencephalographic artifacts by blind source separation.

Psychophysiology 37(2): 163–178.

16. Wasserman S, Bockenholt U (1989) Bootstrapping: applications to psychophys-

iology. Psychophysiology 26(2): 208–221.

17. Jung TP, Makeig S, Waterfield M, Townsend J, Courchesne U, et al. (2000b)

Removing of eye activity artifacts from visual event-related potentials in normal

and clinical subjects. Clin Neurophysiol 111(10): 1745–1758.

18. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind

separation and blind deconvolution. Neural Computation, MIT Press, Cam-

bridge, MA 7(6): 1129–1159.

19. Tang AC, Pearlmutter BA, Zibulevsky M, Carter SA (2000) Blind source

separation of multichannel neuromagnetic responses. Neurocomput 32: 1115–

1120.

20. Parra L, Sajda P (2003) Blind source separation via generalized eigenvalue

decomposition. J Mach Learn Res 4: 1261–1269.

21. Peterson DA, Anderson CW (1999) EEG-based Cognitive Task Classification

with ICA and Neural Networks. Engineering Applications of Bio-Inspired

Artificial Neural Networks. Springer Berlin Heidelberg, 1999: 265–272.

22. Hung CI, Lee PL, Wu YT, Chen LF, Yeh TCH, et al. (2005) Recognition of

Motor Imagery Electroencephalography Using Independent Component

Analysis and Machine Classifiers. Ann Biomed Eng 33(8): 1053–1070.

23. Tang AC, Sutherland MT, Wang Y (2006) Contrasting single-trial ERPs

between experimental manipulations: Improving differentiability by blind source

separation. NeuroImage 29(1): 335–346.

24. Gao JF, Yang Y, Lin P, Wang P, Zheng CX (2010) Automatic Removal of Eye-
movement and Blink Artifacts from EEG Signals. Brain Topo 23(1): 105–114.

25. Gao JF, Lu L, Yang Y, Yu G, Na LT, et al. (2012) A Novel Concealed

Information Test Method Based on Independent Component Analysis and
Support Vector Machine. Clin EEG Neurosci 43(1): 54–63.

26. Comon P (1994) Independent component analysis, a new concept? Signal

Process 36(3): 287–314.

27. Makeig S, Bell AJ, Jung TP, Sejnowski TJ (1996) Independent Component
Analysis of Electroencephalgraphic Data. Adv Neural Inform Process Systems 8,

MIT press, Cambridge MA, 145––151.

28. Jung TP, Humphries C, Lee TW, Makeig S, McKeown MJ, et al. (1998)
Extended ica removes artifacts from electroencephalographic recordings. Adv

Neural Inform Process Systems, 894–900.

29. Lee TW, Girolami M, Sejnowski EJ (1999) Independent component analysis
using an extended informax algorithm for mixed subgaussian and supergaussian

sources. Neural Comput 11(2): 409–433.

30. Rosenfeld JP, Ellwanger JW, Nolana K, Wua S, Bermanna RG, et al. (1999)
P300 Scalp amplitude distribution as an index of deception in a simulated

cognitive deficit model. Int J Psychophysi 33(1): 3–19.

31. Xu N, Gao XR, Hong B, Miao XB, Gao SK, et al. (2004) BCI Competition
2003—Data Set IIb: Enhancing P300 Wave Detection Using ICA-Based

Subspace Projections for BCI Applications. IEEE Trans Biomed Eng 51(6):
1067–1072.

32. Polich J (2007) Updating P300: An integrative theory of P3a and P3b. Clin

Neurophysiol 118: 2128–2148.

33. Demiralp T, Ademoglu A, Schurmann M, Eroglu CB, Basar E (1999) Detection
of P300 waves in single trials by the Wavelet Transform (WT). Brain Lang 66(1):

108–128.

34. Kalatzis I, Piliouras N, Ventouras E, Papageorgiou CC, Rabavilas AD, et al.
(2004) Design and implementation of an SVM-based computer classification

system for discriminating depressive patients from healthy controls using the
P600 component of ERP signals, Comput Meth Prog Biomed 75(1): 11–22.

35. Hsu WY, Lin CC, Ju MS, Sun YN (2007) Wavelet-based fractal features with

active segment selection: Application to single-trial EEG data. J Neurosci Meth
163(1): 145–160.

36. Herrmann CS, Knight RT (2001) Mechanisms of human attention: event-

related potentials and oscillations. Neurosci and Biobehav Rev 25(6): 465–476.

37. Yong YPA, Hurley NJ, Silvestre GCM (2005) Single-trial EEG classification for
brain-computer interface using wavelet decomposition. Eur Signal Process.

38. Mrzagora AC, Bunce S, Izzetoglu M, Onaral B (2006) Wavelet analysis for EEG

feature extraction in deception detection Proceedings of the 28th IEEE EMBS
Annual International Conference. New York City, USA, Aug 30.

39. Ademoglu A, Micheli-Tzanakou E, Istefanopulos Y (1997) Analysis of pattern

reversal visual evoked potentials (PRVEPs) by spline wavelets. IEEE Trans on
Biomed Eng 44(9): 881–890.

40. Unser M, Aldroubi A, Eden M (1992) On the asymptotic convergence of B-

spline wavelets to Gabor functions. IEEE Trans on Information Theory 38(2):
864–872.

41. Quiroga RQ, Sakowitz OW, Basar E, Schurmann M (2001) Wavelet transform

in the analysis of the frequency composition of evoked potentials. Brain Res
Protoc 8(1): 16–24.

42. Chen FL, Li FC (2010) Combination of feature selection approaches with SVM

in credit scoring. Expert Syst Appl 37: 4902–4909.
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