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Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However,
reports on applications with electroencephalography (EEG) show a demand for a better accuracy and
stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG
approach. In our study both methods were applied simultaneously in a real-time Sensory Motor Rhythm
(SMR)-based BCI paradigm, involving executed movements as well as motor imagery. We tested how the
classification of NIRS data can complement ongoing real-time EEG classification. Our results show that
simultaneous measurements of NIRS and EEG can significantly improve the classification accuracy of motor
imagery in over 90% of considered subjects and increases performance by 5% on average (pb0:01). However,
the long time delay of the hemodynamic responsemay hinder an overall increase of bit-rates. Furthermore we
find that EEG and NIRS complement each other in terms of information content and are thus a viable
multimodal imaging technique, suitable for BCI.
chnology, Machine Learning

-NC-ND license.
© 2011 Elsevier Inc. Open access under CC BY-NC-ND license.
Introduction

One of the main goals of Brain Computer Interface (BCI) related
research today is to increase information transfer rates while at the
same timeminimizing the cost of setup. The latter being the actual setup
of hardware during a session, as well as the calibration of subject-
dependent classifiers for real-time feedback. Since its precursors in the
early 70s (Vidal, 1973) BCI technologyhas developedmanyvariants and
employed a large number of methods, such as electroencephalography
(EEG) (Birbaumer et al., 1999; Parra et al., 2002; Cheng et al., 2002;
Buttfield et al., 2006; Blankertz et al., 2007; Dornhege et al., 2007;
Wolpaw et al., 2002), Magnetoencephalography (MEG) (Waldert et al.,
2008), Electrocorticography (ECoG) (Ramsey et al., 2006; Leuthardt et
al., 2006; Felton et al., 2007; Pistohl et al., 2008; Miller et al., 2010;
Brunner et al., 2011), functionalmagnetic resonance imaging (Weiskopf
et al., 2003; Yoo et al., 2004; Sorger et al., 2009; Lee et al., 2009), near-
infrared spectroscopy (NIRS) (Tsubone et al., 2007; Abdelnour and
Huppert, 2009) among others. Combinational approaches for EEG
features from multiple domains (Dornhege et al., 2004), such as
movement related potentials (MRPs) and event-related desynchroniza-
tions (ERD), as well as combinations of EEG and peripheral parameters
like electromyography (Leeb et al., 2010) have been shown to increase
the robustness of the classification.

These positive findings for combined approaches have motivated
us for an evaluation of a simultaneous EEG and NIRS setup which
preserves the advantages of both non-invasive techniques namely
low costs, portability and easiness to handle. NIRS measures the
concentration changes of oxygenated and deoxygenated hemoglobins
([HbO] and [HbR]) in the superficial layers of the human cortex. While
concentration of [HbO] is expected to increase after focal activation of
the cortex due to higher blood flow, [HbR] is washed out and
decreases (Kwong et al., 1992; Villringer et al., 1993; Logothetis et al.,
2001). Thereby, it measures a comparable effect to the blood
oxygenation level dependent (BOLD) contrast in functional magnetic
resonance imaging (fMRI), since also here the washout of [HbO] is the
major constituent (Kleinschmidt et al., 1996).

The idea of using NIRS as an optical BCI has been introduced by
Coyle in 2004 (Coyle et al., 2004). Since then a number of groups
followed the direction of using NIRS as a basis for optical BCI (Coyle et
al., 2007; Sitaram et al., 2007; Wriessnegger et al., 2008; Bauernfeind
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et al., 2008; Kanoh et al., 2009; Luu and Chau, 2009), by either
examining the resulting signals for motor imagery or classifying the
NIRS signals directly. A recent publication used NIRS as a ‘brain switch’
and combined it with an EEG-based SSVEP for the operation of an
orthosis (Pfurtscheller et al., 2010). However, to our knowledge our
study is the first report of simultaneous EEG and NIRS measurements
for SMR-based Brain–Computer-Interfacing. In general a multi modal
approach can have a number of benefits: As every neuroimaging
method suffers from its particular limitations (EEG from spatial
resolution, while NIRS or fMRI from the sluggishness of the underlying
vascular response limiting its temporal resolution), it now becomes
possible to partly overcome these by focusing on their individual
strengths (Friston, 2009; Bießmann et al., 2011). Furthermore and
maybe more importantly, the information gained from these various
sources complement each other to some degree (Bießmann et al.,
2010; Murayama et al., 2010). Due to this reasoning it becomes
apparent, why simultaneous NIRS and EEG measurements are widely
used in order to research language processing (Wartenburger et al.,
2007; Ehlis et al., 2009; Telkemeyer et al., 2009; Rossi et al., 2010;
Grossmann et al., 2010) and the visual cortex (Obrig et al., 2002;
Herrmann et al., 2008). A recent study that examines the somato-
motoric activity following medial nerve stimulation (Takeuchi et al.,
2009) shows the reliability of simultaneous measurements of NIRS
and EEG in the motor and somatosensory domain, which proves to be
valid for SMR-based BCI as well.

By extracting relevant NIRS features to support and complement
high-speed EEG-based BCI and thus forming a hybrid BCI (Pfurtscheller
et al., 2010), we exploit the responsiveness of EEG (i.e. high ITR)
as well as enhance and robustify overall BCI performance by using
information from the vascular response, which are not contained
within the EEG. Moreover, we evaluate the time delay and spatial
information content of the hemodynamic response during a SMR-
based BCI paradigm.

The following section introduces the setup and design of our study,
as well as the statistical tools we applied for the analysis of the
acquired data. In Results section we present the experimental results
and Discussion and conclusions section concludes the work by
discussing our findings and puts them into perspective with future
work.
Fig. 1. Locations of EEG electrodes; sources, detectors and actual measurement channels
of NIRS. Note that electrodes and optodes might share a location.
Methods

Participants and experimental design

14 healthy, right-handed volunteers (aged 20 to 30) participated
in the study, which lasted approximately 4 h. The experiment was
approved by the local ethics committee (Charité University Medicine,
Berlin, Germany), and performed in accordance with the policy of the
Declaration of Helsinki. The subjects were seated in a comfortable
chair with armrests and were instructed to relax their arms. The
experiment consists of 2 blocks of motor execution by means of hand
gripping (24 trials per block per condition) and 2 blocks of real-time
EEG-based, visual feedback controlled motor imagery (50 trials per
block per condition). For all blocks the first 2 s of each trial began with
a black fixation cross, that appeared at the center of the screen. Then,
as a visual cue an arrow appeared pointing to the left or right. For the
case of motor imagery, the fixation cross started moving for 4 s,
according to the classifier output. After 4 s the cross disappeared and
the screen remained blank for 10.5±1.5 s. The online processing was
based on the concept of coadaptive calibration (Vidaurre et al., 2011)
and is described in detail in Data analysis section. For the case of
executed movements the fixation cross remained fixed and the
subjects were instructed to open and close their hands with an
approximate frequency of 1 Hz. Also here after 4 s the cross
disappeared and the screen remained blank for 10.5±1.5 s.
Data acquisition

During both tasks simultaneous measurements of EEG and NIRS
were performed. The NIRS-System (NIRScout 8–16, NIRx Medizin-
technik GmbH, Germany) was equipped with 24 optical fibers (8
sources with wavelengths of 850 nm and 760 nm, 16 detectors
convolving to 24 measurement channels). Frontal, motor and parietal
areas of the head were covered as shown in Fig. 1. The sampling
frequency was fNIRS=6.25 Hz. EEG, electrooculogram (EOG) and
electromyogram (EMG) were recorded with a multichannel EEG
amplifier (BrainAmp by Brain Products, Munich, Germany) using 37
Ag/AgCl electrodes, 2 bipolar EMG, 2 bipolar EOG (vertical as well as
horizontal EOG), sampled at fEEG=1 kHz and downsampled to
100 Hz. NIRS probes and EEG electrodes were integrated in a standard
EEG cap (extended 10–20 system with a possibility of 256 electrodes)
with inter-optode distances between 2 and 3 cm. The optical probes
are constructed, such that they fit into the ring of standard electrodes.
This enables us to situate the NIRS channel positions according to the
standard 10–20 system, as can be seen in Fig. 1.

Data analysis

Based on a recent development coined Co-adaptive Calibration the
user was given instantaneous EEG-based BCI feedback for the two
blocks of motor imagery (Vidaurre et al., 2011). During the first block
of 100 trials a subject-independent classifier, depending on band
power estimates of laplacian filtered, motor-related EEG channels,
was used. For the second block subject-dependent spatial and
temporal filters were estimated from the data of the first block and
combined with some subject-independent features, namely band
power of laplacian filtered, motor-related EEG electrodes, to form the
classifier for the second block. During the online feedback features
were calculated every 40 ms with a sliding window of 750 ms.

The analysis of NIRS data was performed offline. Concentration
changes of hemoglobin were calculated according to the modified
Lambert–Beer law on the NIRS data (differential path length factor of
5.98 (higher wavelength: 830 nm) and 7.15 (lower wavelength:
760 nm), extinction coefficients for [HbO] 2.5264/1.4866 (higher/
lower wavelength) and [HbR] 1.7986/3.8437 (higher/lower wave-
length), and an inter-optode-distance of 3 cm). This procedure converts
attenuation changes measured by the NIRS system into concentration
changes of oxygenated [HbO] and deoxygenated [HbR] hemoglobin
(Cope et al., 1988; Kocsis et al., 2006). NIRS datawas low-passfiltered at
0.2 Hz using a one-directional filter method, namely a 3rd order
Butterworth-filter. A baseline interval was defined from −2 s to 0 s
before stimulus onset, and its mean subtracted from each trial. To
examine how well the NIRS data classifies the given tasks we analyzed
the time courses with the help of a moving window (width 1 s, step
size=500 ms) that we apply from 6 s, prior to stimulus onset and up to
15 s after stimulus onset. Time courses of [HbO] and [HbR] were
averagedover the time lengthof themovingwindowwidth, resulting in
average concentration changes for each of the 24 channels. These time-
averaged concentration changes were then used as features for a linear



521S. Fazli et al. / NeuroImage 59 (2012) 519–529
discriminant analysis (LDA). Validation was performed by a cross-
validation with an 8-fold chronological split. Previous studies have
shown that a chronological splitmaintains non-stationarities of thedata
and thus represents a relatively conservative measure (Lemm et al.,
2011). We used the time interval of the global peak classification
accuracy and performed paired t-tests to test whether classification of
motor imagery shows a significantly earlier peak accuracy as compared
to executed movements and in which chromophore accuracy was
higher. Trials of the twomeasured blocks per conditionwere combined.

Offline EEG decoding was performed as follows: For both
paradigms (real movements and motor imagery) the two blocks
were combined. Subject-dependent band-pass filter coefficients were
estimated by means of an established procedure (Blankertz et al.,
2008). The selected band-bass filter coefficients for executed move-
mentswere mostly in the α-band (5 of 14 subjects) and in the β-band
(7 of 14 subjects). For a small proportion of subjects (2 of 14) a broad-
band filter was selected. For the case of motor imagery the
discriminant information was highest in the α-band (10 of 14
subjects), followed by the β-band (3 of 14 subjects). Only for one
subject a broad-band filter was chosen.

A spatial filter, in form of Common Spatial Patterns (Fukunaga,
1990; Koles and Soong, 1998; Ramoser et al., 2000; Blankertz et al.,
2008) was estimated and a LDA classifier computed. The previously
mentioned parameters for subject-dependent temporal filters, spatial
filters and linear classifier were estimated solely on the training set of
each cross-validation step Lemm et al. (2011). The cross-validation
followed the same principle as mentioned for the NIRS signals. For the
time course of classification accuracy the same moving window was
applied as for the NIRS data. Furthermore to establish a singlemeasure
of classification accuracy for each subject and paradigm, the time
interval was chosen to be [750−3500]ms after stimulus onset for all
subjects.

To examine the possible benefits of combining both signal
domains, classification results were calculated for EEG and NIRS
separately, but also in combination by estimating a meta-classifier.
After estimation of the three individual classifiers (one for the EEG
induced band power changes and one each for the evoked deflection
from baseline [HbO] and [HbR]) and their performance, we explore a
number of possible combinations (such as EEG, [HbO] or EEG, [HbO],
[HbR] etc.).

Our selection of NIRS features for the combination with EEG was
based on the global peak cross-validation accuracy for each individual
subject. As a meta-classifier we used an LDA, whose weights are re-
estimated within each cross-validation step in order to avoid a bias in
the estimation of the generalization error (Lemm et al., 2011). The
general procedure can be seen in Fig. 2. To graphically investigate the
potential improvement of a combination of NIRS and EEG measure-
ments as compared to a BCI, solely dependent on EEG, we show
scatter plots comparing EEG classification accuracy and the improve-
ment for EEG in combination with each NIRS chromophore as well as
both chromophores.
Fig. 2. Flowchart of the first step of the cross-validation procedure: The EEG and NIRS
data is split into 78 training data and 18 test data. First an individual LDA classifier is
computed for EEG, [HbO] and [HbR]. Then a meta-classifier is estimated for optimally
combining the three LDA outputs. All LDA classifiers are then applied to the test set
(dotted green line) and a test loss computed. The procedure is repeated for
8 chronological splits.
Togain topographicalmaps of significant features, and thereby show
the physiological validity of our results, we calculated point-biserial
correlation coefficients (Tate, 1954). The point-biserial correlation
coefficient is a special case of the Pearson product–moment correlation
coefficient and measures the association of a binary random variable
and a continous random variable. It is defined as:
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whereM1 andM0 are themean values of data points in groups 1 and 0,
n1/0 the number of examples in groups 1 and 0 and n the total sample
size. Using Fishers transformation the correlations were transformed
into unit variance z-scores for each subject j (Hotelling, 1953) and
grand average z-scores were obtained by aweighted sum of individual
z-scores over all subjects:
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tanh−1 rj
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wheremj is the sample size of subject j and N=14 the total number of
subjects. p-values for the hypothesis of zero correlation in the grand
average were computed by means of a two-sided z-test.

Mutual information is an information theoretic measure, which
estimates the information that two random variables share. It can be
expressed in terms of conditional entropies of randomvariablesX and Y:

I X; Yð Þ = H Xð Þ−H X jYð Þ = H Yð Þ−H Y jXð Þ ð3Þ

The conditional entropy H(X|Y) quantifies the remaining entropy
of X, after the value of Y is known. If H(X|Y)=H(X), then I(X; Y)=0:
the variables are independent. On the other hand, if X and Y are
identical, then H(X|Y)=0and hence I(X; Y)=H(X). I(X; Y) is
symmetric and its values are in the range of 0 and 1: I(X; Y)=
I(Y; X)∈[0; 1] (MacKay, 2002). To examine the degree of independence
between the NIRS and EEG-based classifier outputs, we restrict their
outputs to values 0 and 1 and estimate their mutual information.

To further investigate, whether mostly the same trials are
classified wrongly by EEG and by NIRS, we form two groups of trials:
one group consists only of trials, where EEG classification was correct,
while in the other group only misclassified trials are included. By
comparing the NIRS classification of each of these groups to the mean
classification of both groups, we can examine to which extent the
NIRS classification results resemble those of the EEG.

Results

Physiological reliability of NIRS features

Our first aim is to show the physiological reliability of NIRS feature
classification both in time and location. We performed single trial
classification of left vs. right motor execution (and imagery) with a
moving time window after stimulus onset. Classification accuracies
for each subject over time can be seen in Fig. 3 for EEG (top row) and
both chromophores of NIRS (middle: [HbO], bottom: [HbR]). The left
column shows motor imagery and the right column executed
movements. A classification accuracy of 100% means that the two
conditions are perfectly separable, while a classification accuracy of
50% represents random guessing when considering a binary classifi-
cation task.

Average EEG classification peaks at 〈teeg
real〉=1680±1014 ms for

executed movements and at 〈teegimag〉=1430±707 ms for motor imag-
ery. Peak classification times of [HbO] are at 〈thboreal〉=7430±2201 ms
and at 〈thbo

imag〉=6501±1579 ms and of [HbR] at 〈thbr
real〉=6966±

2484 ms and 〈thbr
imag〉=6109±1339 ms for executed movements and
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Fig. 3. EEG and NIRS classification accuracy [%] (LDA) for a 1 s moving time window (top: EEG, middle: [HbO], bottom: [HbR], left: motor execution, right: motor imagery). The x-axis
denotes the center of the moving window. Colored lines show the accuracy for the single subjects while the black line is the average over subjects. The gray bar indicates the time
interval of cue presentation.
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motor imagery, respectively. EEG features are thus earlier classifiable as
compared to [HbO] and [HbR] for executed movements (pb10−6 and
pb10−5) and for motor imagery (pb10−6 and pb10−6).

Average EEG classification accuracy for executed movements
(90.8%) is higher than that of [HbO] (71.1.%) and [HbR] (73.3%).
Paired t-tests between EEG and the two NIRS chromophores yield
highly significant results (pb10−3 and pb0.01). While also for motor
imagery EEG scores higher average classification rates (EEG: 78.2%,
[HbO]: 71.7%, [HbR]: 65.0%), here not both p-values are significant
(p=0.09 and pb0.05). For motor imagery [HbO] shows a significantly
higher classification accuracy, as compared to [HbR] (pb0.01).

To examine the topology of significant EEG and NIRS features, Figs. 4
and 5 show log(p) significances of executed and motor imagery,
respectively. The time-dependent scalp plots showgrand-averages over
all subjects, based on the point-biserial correlation coefficient rpb, as
described above. The color bar scales on the right side indicate the
significance levels of the individual imaging methods. Note that the
width of the scale illustrates the maximum level of significance. Red
colors denote higher values of the left class, while blue colors indicate
higher values within the right class. As can be seen for both paradigms
EEG as well as NIRS chromophores show highly significant patterns in
motor-related cortical areas. Note that for EEG (top rowsof Figs. 4 and5)
we observe event-related desynchronization (ERD) which is followed
by an event-related synchronization (ERS), a previously described
physiological effect for EEG oscillations in the alpha and beta band
(Pfurtscheller, 1992).

Interestingly, we find higher significance levels of [HbR] in both
paradigms, as compared to the classification results, where [HbO] yielded
higher accuracies formotor imagery. A second interesting point to note is
the inverted polarity of [HbO] for motor imagery. This effect can also be
seen in the averaged time courses of NIRS data shown in Fig. 6. [HbO] has
the expected shape of a hemodynamic response function in the motor
execution task, although it ascends in both hemispheres but decreases in
the imagery condition. [HbR] shows the expected time courses for both
tasks (imagery/executed) and both conditions (left/right).

Enhancing EEG–BCI performance by NIRS features

While the examination of the NIRS classification itself provided
information about the quality and spatial specificity of theNIRS features,
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Fig. 6. Group-average time courses for the two NIRS channels (namely C3|CFC3 and C4|CFC4) with highest discriminability for both conditions (left and right) and chromophores
([HbO] and [HbR]). Executed movement timecourses are shown on the left panels, while motor imagery timecourses on the right. Top panels depict [HbO] and bottom panels [HbR].
The small gray patch before the first vertical line indicates the baseline, which was set from −2 s to 0 s. The second, larger gray patch indicates the time period of cue presentation
(0 s to 4 s).
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a second aim was to actually combine NIRS and EEG features to form a
hybrid-BCI. As stated in Data analysis section a meta classifier was
derived for combining the individual signals. Table 1 shows classifica-
tion accuracies for EEG, [HbR] and [HbO] and their combinations for
both tasks. Furthermore we show scatter plots, where the EEG
performance is plotted against possible combinations (see Fig. 7). Dots
above the green line indicate that a subject's performance is increased
by the combination of the NIRS chromophore(s) as compared to using
only EEG. The percentage within the figure indicates the percent of
Table 1
Individual LDA classification accuracies for features of both NIRS chromophores ([HbO] an
(pb0.05), ** highly significant (pb0.01) improvements for the individual combinations of E

Executed movements

VP NIRS EEG EEG+

[HbO] [HbR] [HbO] [HbR] [HbO+R

VPeaa 84.4 99.0 100.0 99.0 100.0 100.0
VPeab 64.6 75.0 85.4 87.5 89.6 85.4
VPeac 69.8 56.2 99.0 99.0 99.0 96.9
VPead 91.7 79.2 99.0 100.0 96.9 93.8
VPeae 69.8 85.4 97.9 97.9 97.9 94.8
VPeaf 59.4 52.1 94.8 93.8 93.8 82.3
VPeag 58.3 69.8 100.0 100.0 100.0 100.0
VPeah 77.1 90.6 55.2 77.1 90.6 85.4
VPeai 52.1 49.0 76.0 68.8 69.8 63.5
VPeaj 60.4 63.5 90.6 91.7 92.7 77.1
VPeak 59.4 59.4 93.8 94.8 91.7 72.9
VPeal 99.0 99.0 91.7 99.0 99.0 99.0
VPeam 65.6 60.4 89.6 89.6 86.5 75.0
VPean 84.4 87.5 97.9 97.9 97.9 97.9
Mean 71.1 73.3 90.8 92.6 93.2 87.4
subjects, for whom the combination leads to equal or improved
decoding, and the p-value the significance of the improvement.

While the results in Table 1 indicate that combinations of EEG and
NIRS are beneficial for average decoding success for both paradigms,
only combinations for motor imagery score (highly) significant
improvements. When comparing EEG with combined EEG/[HbO] for
motor imagery, there was an average 5% classification accuracy
increase across all subjects. This increase is highly significant (pb0.01)
and the combination scores higher or equal classification rates for 13
d [HbR]) and EEG, and their combinations with a meta-classifier. * marks significant
EG and NIRS features versus plain EEG decoding. p-values are based on paired t-tests.

Motor imagery

NIRS EEG EEG+

] [HbO] [HbR] [HbO] [HbR] [HbO+R]

77.5 65.0 58.5 78.0 70.0 81.0
61.5 50.5 98.0 98.5 98.0 98.5
62.0 57.5 65.0 69.5 65.0 72.0
72.0 58.5 74.5 80.0 75.0 77.5
80.0 70.0 82.0 86.5 84.0 85.0
57.0 59.0 58.0 57.5 57.5 57.0
91.5 90.0 89.5 97.0 96.0 97.0
85.0 85.0 95.5 95.5 96.0 95.0
52.5 54.5 55.0 56.5 58.5 48.5
81.5 58.5 89.5 93.0 89.0 92.5
70.0 65.5 78.0 82.5 79.0 84.5
75.0 74.5 93.5 95.0 96.0 94.0
76.0 57.0 58.0 75.5 64.0 80.5
62.0 64.5 100.0 100.0 100.0 100.0
71.7 65.0 78.2 83.2** 80.6* 83.1*
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out of 14 subjects. Interestingly, two subjects (VPeaa and VPeam)
with very bad performance in EEG–BCI were much better classifyable
when EEG/NIRS was used (with rates of 81% and 80.5%, respectively).
The two other subjects with very low EEG performance, namely VPeac
and VPeal, did not show further improvements.

Fig. 8 shows the relation of the classification performance of the
individual measurement methods (EEG, [HbO] and [HbR]) in relation
to theirmutual information content (I(EEG; [HbO]) and I(EEG; [HbR]).
The left column shows these results for executed movements, while
the left column shows the results for the motor imagery. Generally
speaking the mutual information content rises with higher classifica-
tion accuracy for all consideredmethods. If for a given subject method
X scores a low classification accuracy, one would expect the
conditional entropy H(X|Y) to be of similar magnitude as H(X) and
therefore the mutual information content is very low. On the other
hand if both methods score very high classification accuracies, H(X|Y)
will be low, leading to a high mutual information content.

However, for some subjects we see that, while the classification
accuracyof a givenmethod is high,we observe a lowmutual information
content. This can be interpreted in two ways. Either the other
classification method does not work well (and its output is thus very
different) or their information content is complementary. The average
mutual information over all subjects for executed movements are given
as: I(EEG; [HbO])=0.125±0.177 bit and I(EEG; [HbR])=0.194±0.277
bit. For motor imagery I(EEG; [HbO])=0.096±0.127 bit and I(EEG;
[HbR])=0.067±0.110 bit.

The left part of Fig. 9 shows the relation of [HbO] classification
performance to [HbO] classification performance of trials that were
correctly classified by EEG (HbO(EEG+)) and to [HbO] classification
performance of trials that we misclassified by EEG (HbO(EEG−)). The
right part shows the same analysis, comparing EEG classification
accuracy to EEG(HbO+) and to EEG(HbO−). As can be seen for both
plots most points lie close to the angle bisector, only a few blue marks
appear below the diagonal. However, these are caused by very small
subgroups (the size of the squares encode the number of trials). This
means that [HbO] and EEG generally misclassify different trials. If they
did not and for example HbO(EEG+) would classify more accurately
as compared to HbO(EEG−), green dots would generally be
substantially higher than blue ones. However, since this is not the
case we conclude that the classifier outputs, coming from the two
signals are independent to some degree. While we do not explicitly
show the results here, results are similar for [HbR].

Discussion and conclusions

Recently BCIs that solely rely on NIRS have been realized (Tsubone
et al., 2007; Abdelnour and Huppert, 2009). However, when looking at
plain NIRS classification rates it becomes apparent that NIRS cannot be
seen as a viable alternative to EEG-based BCIs on its own. However, in
a combination with EEG we find that NIRS is capable of enhancing
event-related desynchronization (ERD)-based BCI performance sig-
nificantly. Not only does it increase performance formost subjects, but
it also allows meaningful classification rates for those who would
otherwise not be able to operate a solely EEG-based BCI.

Given that the typical behavior of hemoglobin oxygenation during
brain activation consists of an increase in [HbO] approximatelymirrored
by a decrease of [HbR] (Lindauer et al., 2001; Steinbrink et al., 2006), for
motor imagery (Fig. 6) only [HbR] clearly showed the typical behavior.
For [HbO] there seems to be an initial drop followed by a subsequent
rise.Whilewe have no simple explanation for this finding, following are
some considerations which may be relevant: The overall amplitudes
duringmotor imagery aremuch smaller than duringmotormovements
(note the different scaling) in line with previous fMRI experiments
(Hermes et al., 2011). Therefore, spontaneous fluctuations of [HbO] and
[HbR] may appear much more dominant to the point that they can
obscure some small simulation-related changes. Since spontaneous
fluctuations aremuch stronger for [HbO] than for [HbR] thismay bepart
of the observeddiscrepancy. Furthermore, inNIRSwith its poorer spatial
resolution as compared to fMRI activated and non-activated or
deactivated brain areas may be within the sample volume and such
partial volume effects may further “dilute” the effect of stimulation.
Given that duringmotor imagery premotor cortexmay be activated and
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primary motor cortex not (Hermes et al., 2011) which is different from
motor movements, it seems possible that such partial volume effects
have occurred during motor imagery. Finally, as seen in Fig. 6, [HbO] is
rapidly changing during the “baseline” period, i.e. the average of this
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Fig. 9. Left: Scatter plot comparing [HbO] classification accuracy of all trials to [HbO] classifica
Right: comparing EEG classification accuracy of all trials to EEG classification accuracy of tria
time periodmay not serve as an optimal definition of baseline for [HbO]
making the quantitative interpretations referring to this baseline
difficult. A last consideration refers to potential extracerebral contribu-
tions which are stronger for the HbO signal than the HbR signal and
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which may be related to such systemic factors as e.g. blood pressure.
Further research is needed to clarify this point. We are currently
preparing a similar studywithEEG-feedbackcontrolled SMR–BCI during
simultaneous fMRI recordings. Therewith,wewill be able to relate BOLD
fMRI findings to the EEG and (indirectly) the NIRS recordings.
Furthermore, we hope that a simultaneous NIRS–fMRI study with
measures of systemic variables such as blood pressure and breathing
will give us further evidence of the origin of this effect.

An obvious concern that arises from the addition of NIRS to EEG-
based BCI feedback is the long time delay of the hemodynamic
response. While we show that classification accuracy increases
substantially by employing NIRS, one may rightly argue that
information transfer rates, which measure information per unit time,
could suffer from the inferior temporal responsiveness of such a
combination. To this end we would like to offer the following
arguments. Firstly, for subjects (and patients) which are not able to
operate a BCI, solely based on EEG, this combination presents a viable
alternative. Secondly, one could imagine a feedback scenario, where a
secondary NIRS-derived classifier is only turned on in particular trials,
when the ‘primary’ EEG-based classification is likely to fail.

In terms of information content, we show that the mutual
information of both methods rises with their individual classification
accuracy. However, there are also a few examples, where this
relationship does not hold true and the mutual information of EEG
and NIRS classfier outputs is very small, as compared to their individual
accuracies (see Fig. 8). To further examine these cases we offer an
additional analysis, which is given in Fig. 9. As can be seen here the
individual methods mostly misclassify different trials. In combination
with the fact, that increased classification accuracy does arise by
combining the classifier outputs meaningfully, we interpret these
findings such that the individual methods complement each other in
terms of information content.

In our study we validated the NIRS data as well as its combinations
with EEG in an offline fashion, but our methods could also be applied
to a real time experiment. In addition, a large number of potential
extensions are possible in order to make the combined system faster
to set-up. The current (wet) EEG channels could be replaced by dry
electrodes (Popescu et al., 2007; Sellers et al., 2009; Grozea et al.,
2011) and a zero-training classifier in the spirit of (Fazli et al., 2009a,b,
2011) could be established for NIRS. A further interesting aspect
would be to study non-stationarities during an experiment (Shenoy et
al., 2006) and techniques for compensating it (Sugiyama et al., 2007;
von Bünau et al., 2009) also for the present multi-modal BCI setup.

While in this contribution we focused on ERD-based BCIs, there is
per se no reason why a NIRS–EEG combination would not also be
beneficial for other BCI paradigms, such as event-related potential
(ERP)-based BCIs or steady-state visual evoked potential (SSVEP)-
based BCIs, among others. Future studies will show if these
combinations will also yield beneficial results.
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